Что нового узнали учёные о дрейфе магнитного полюса Земли и магнитного поля Мирового океана

Что нового узнали учёные о дрейфе магнитного полюса Земли и магнитного поля Мирового океана Что нового узнали учёные о дрейфе магнитного полюса Земли и магнитного поля Мирового океана

Осипов О.Д. 1, д.т.н Минлигареев В.Т.2, д.ф.-м.н Копытенко 3,

к.ф.-м.н Меркурьев С.А.3,4, Арутюнян Д.А.2,5, к.т.н Кузнецов К. М.5,

д.ф.-м.н Максимочкин В.И.5, Григорьев Е.К.6

Исследование дрейфа Южного магнитного полюса Земли и магнитного поля Мирового океана в кругосветной экспедиции    

ОИС ВМФ "Адмирал Владимирский"

Введение

Для Земли магнитное поле является жизненно важным в глобальном смысле, выступает как магнитный щит от солнечных и галактических космических лучей (СКЛ и ГКЛ) для всего живого и для созданной человечеством инфраструктуры технических средств и систем по всей планете. Магнитное поле Земли (МПЗ) с древних времен привлекает внимание человечества и используется им для решения широкого круга задач. Первоначально это было связано с мореплаванием и необходимостью решения навигационной задачи с помощью морского компаса, история которого насчитывает уже более двух тысячелетий. В настоящее время характеристики магнитного поля используют для навигации судов, летательных аппаратов, космических кораблей, для добычи полезных ископаемых. Магнитные датчики есть практически в каждом мобильном телефоне.

Поэтому наблюдение за магнитным полем Земли (МПЗ), его "поведением" и постоянный мониторинг его полюсов является особенно важным на протяжении всего периода солнечной активности.

1. Главное магнитное поле Земли. Магнитные вариации

По современным представлениям МПЗ в любой точке земной поверхности и в околоземном пространстве можно представить в виде трёх составляющих: главного (нормального) поля — диполя, полей вариаций и магнитных аномалий (Рис. 1 и 2).

     
Рис. 1. Межпланетное МПЗ (слева) и главное МПЗ (справа). Изображение предоставлено участниками экспедиции

Рис. 1. Межпланетное МПЗ (слева) и главное МПЗ (справа). Изображение предоставлено участниками экспедиции

Рис. 2. Аномальное МПЗ. Мировая магнитная карта АМПЗ WDMAM   (World Digital Magnetic Anomaly Map).  (1:50 000 000, 2007). Изображение предоставлено участниками экспедиции

Рис. 2. Аномальное МПЗ. Мировая магнитная карта АМПЗ WDMAM  (World Digital Magnetic Anomaly Map).  (1:50 000 000, 2007). Изображение предоставлено участниками экспедиции

Главное магнитное поле, простирающееся на несколько радиусов Земли, защищает нас от влияния потока протонов и электронов, идущих от солнечных вспышек, а также от галактических лучей, приходящих из далекого космоса. Состояние магнитного поля в околоземном космическом пространстве контролируют наземные средства и многочисленные космические аппараты, в частности российские геостационарные спутники гидрометеорологического и гелиогеофизического назначения серии "Электро-Л".

Потоки СКЛ и ГКЛ, возмущая ионосферу и магнитосферу Земли, "доносят" вариации магнитного поля до поверхности Земли. Вклад поля вариаций в общее МПЗ может достигать 5–10 % и определяется по данным сети магнитовариационных станций, основной из которых является государственная наблюдательная сеть Росгидромета. Головным учреждением по магнитным наблюдениям на государственной наблюдательной сети является Институт прикладной геофизики имени академика Е.К. Федорова (ФГБУ "ИПГ"). Необходимо отметить, что значительные изменения магнитного поля, происходящие, в первую очередь, во время интенсивных солнечных вспышек, провоцируют на Земле магнитные бури, относящиеся к категории опасных гелиогеофизических явлений (ОГЯ). Магнитные бури по интенсивности развития, продолжительности или моменту возникновения могут представлять серьёзную угрозу энергетическим системам, протяжённым трубопроводам, системам связи, навигации, космическим аппаратам, другим высокотехнологичным системам и могут наносить значительный материальный ущерб. Как результат воздействия — магнитные бури в отдельных случаях могут влиять и на здоровье людей. Поэтому роль магнитных наблюдений в мониторинге и прогнозе ОГЯ чрезвычайно важна и её нельзя недооценивать. Магнитные наблюдения являются важнейшей частью государственной наблюдательной сети. Кроме того, необходимо наблюдение за перемещением магнитных полюсов, так как важно знать их место расположения при определении магнитного склонения для навигации, определении степени опасности полярных районов при сильных магнитных возмущениях. 

Источники главного магнитного поля находятся в земном ядре. Вклад главного поля в МПЗ для большинства районов Земли является определяющим и варьируется от 80 до 98 %. Исследования показали, что главное поле изменяется со временем, для него характерно наличие вековых вариаций. В последнее время эти изменения сильно ускорились. Фундаментальные исследования в этом направлении проводят академические институты, в частности Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН и его Санкт-Петербургский филиал (ИЗМИРАН).

Определение параметров главного поля (Рис.3) производится по международным моделям, основными из которых являются IGRF (International geomagnetic reference field) и WMM (World Magnetic Model).

Среди проблем, решаемых фундаментальной геофизикой, особо следует выделить задачи по определению возраста океанической коры, изучению её строения, механизмов формирования и эволюции. Происхождение магнитного поля Земли рассматривалось ещё Альбертом Эйнштейном как одна из трёх наиболее важных нерешённых проблем в физике. Хотя теперь мы знаем, что магнитное поле создаётся в результате конвекции в металлическом внешнем жидком ядре Земли, где самогенерирующее действие динамо не даёт полю затухнуть. Но детальная физика работы геодинамо не вполне изучена.

Рис. 3. Силовая линия магнитного поля Земли, проходящая через Северный и Южный магнитный полюс (слева). Вектор напряжённости магнитного поля HТ Земли и его составляющие X, Y, Z (справа). Изображение предоставлено участниками экспедиции

Рис. 3. Силовая линия магнитного поля Земли, проходящая через Северный и Южный магнитный полюс (слева). Вектор напряжённости магнитного поля HТ Земли и его составляющие X, Y, Z (справа). Изображение предоставлено участниками экспедиции

В настоящее время наблюдается тенденция уменьшения дипольного магнитного момента Земли, которая отчасти связана с магнитной аномалией в Южной Атлантике, где поле на поверхности Земли сейчас примерно на 35% слабее среднего. Если эта тенденция сохранится, то это может привести к распаду дипольного поля. Ответ на вопрос, как долго будет сохраняться текущая скорость распада дипольного поля, последует ли за этим инверсия главного магнитного поля, представляет более чем академический интерес.  Как отмечалось ранее — именно дипольное магнитное поле (главное поле) защищает нашу планету от СКЛ и ГКЛ.

При исследовании пространственной структуры главного магнитного поля Земли и динамики его изменений особую роль следует отвести проведению измерений на акватории Мирового океана, поскольку там практически отсутствуют магнитные обсерватории. Более 30 лет (с 1953 по 1991 гг.) на борту немагнитной шхуны "Заря" (ИЗМИРАН) проводились систематические измерения четырёх компонент геомагнитного поля — модуля вектора напряженности, горизонтальной и вертикальной составляющих, магнитного склонения, на основании которых была создана обширная база данных. В ходе этих исследований были заложены морские пункты векового хода, которые помогли отслеживать динамику изменения МПЗ в некоторых точках Мирового океана. Ключевыми районами, где проведение измерений помогает корректировать глобальные модели геомагнитного поля, являются приполярные  области, то есть области близкие к Южному и Северному магнитным полюсам.

Таким образом, определение положения Северного и Южного магнитного полюсов и их движение является важной и актуальной фундаментальной и прикладной задачей. Исследование особенностей миграции магнитных полюсов Земли способствует пониманию природы генерации главного магнитного поля.

2. Аномальное магнитное поле Земли

Аномальная составляющая магнитного поля Земли (АМПЗ) — магнитное поле региональных и локальных магнитных аномалий, источники которого находятся в земной коре (Рис.2 и 4). АМПЗ обусловлено неоднородностью магнитных свойств горных пород, слагающих земную кору, и отражает особенности её строения, историю формирования и развития. АМПЗ фактически стабильная во времени составляющая магнитного поля, которая может измениться только в результате тектонических процессов или крупной антропогенной деятельности.

Рис. 4. Пример современной интерпретации данных аэромагнитной и морских съемок МПЗ: 1 - карта АМПЗ; 2 - поверхность Земли; 3 - поверхность магнитоактивных тел. Изображение предоставлено участниками экспедиции

Рис. 4. Пример современной интерпретации данных аэромагнитной и морских съемок МПЗ: 1 - карта АМПЗ; 2 - поверхность Земли; 3 - поверхность магнитоактивных тел. Изображение предоставлено участниками экспедиции

Исследование параметров АМПЗ проводится для геологоразведочных работ, изучения в области наук о Земле, а также используется для применения в системах автономной навигации по геофизическим полям Земли.

Для изучения параметров магнитного поля Мирового океана применяются буксируемые (забортные) морские магнитометры. Магнитометрические системы подобного типа традиционно, помимо решения академических научных задач, активно используются для проведения геологоразведочных, инженерных и археологических изысканий на акватории Мирового океана ведущими отечественными и зарубежными сервисными и научно-производственными компаниями (Рис.5). Одним из отечественных предприятий по выполнению морских магнитометрических изысканий является предприятие АО "Южморгеология", стоящее у истоков становления метода морской магнитной съёмки в нашей стране. Только за последние пять лет (2015–2020 гг.) компанией (холдинг АО "Росгеология") было выполнено более 100 000 погонных километров магнитометрических измерений на акватории российского шельфа, зарубежных государств и Мирового океана.

3. Исследования дрейфа магнитных полюсов

Магнитный полюс — это блуждающая точка на поверхности северного и южного полушария Земли, где геомагнитное поле направлено вертикально (горизонтальная составляющая равна нулю). Несмотря на то, что все линии равного магнитного склонения сходятся на магнитном полюсе, склонение на самом полюсе не определено. Все компасы направлены к Южному или Северному магнитным полюсам, но в силу наличия недипольной составляющей МПЗ, стрелки непосредственно на полюса не указывают. И даже в полярных областях сходимость линий магнитного склонения не является радиальной.

До 2019 г. для расчёта главного поля использовались модели эпохи 2015 г. Во все эпохи шёл дрейф магнитных полюсов. Скорость дрейфа Северного магнитного полюса в 1970-х годах составила 10 км/год, в 2001 г. — 40 км/год, в 2004 г. — 60 км/год, в 2015 г. — 48 км/год. Начиная с 2016 г. необычно большая скорость, с которой смещается Северный магнитный полюс Земли, привела к серьёзным ошибкам в расчётах модели 2015 г. В начале 2019 г. невязка определения Северного магнитного полюса составила порядка 40 км. Для устранения такого рода ошибок с начала 2019 г. началось досрочное обновление международных моделей МПЗ. В феврале — WMM — Национальным геофизическим центром данных США (NGDC), а в декабре вышла обновлённая версия WMM 2020 (Рис.6).  

Рис. 6. Карта магнитных склонений модели главного МПЗ WMM 2020. (https://www.ngdc.noaa.gov/geomag/WMM/). Изображение предоставлено участниками экспедиции

Рис. 6. Карта магнитных склонений модели главного МПЗ WMM 2020. (https://www.ngdc.noaa.gov/geomag/WMM/). Изображение предоставлено участниками экспедиции

В том же декабре 2019 г. Международной ассоциацией геомагнетизма и аэрономии (IAGA) выпущена очередная версия модели IGRF-13. Эти модели необходимы для функционирования как профессиональных навигационных систем, так и бытовых навигаторов, в том числе для мобильных телефонов. С меньшими скоростями и несоосно изменялось и положение Южного магнитного полюса (ЮМП). На рисунке 6 хорошо виден узел схождения изогон (линий равного магнитного склонения) между Австралией и Антарктидой. Это и есть ЮМП.

Задача определения положения Южного магнитного полюса имеет длинную историю. Первые геомагнитные измерения (измерения склонения) в Антарктическом регионе были выполнены в ходе второй кругосветной экспедиции Дж. Кука (1772–1775). Однако оценок местоположения ЮМП не делалось. Первое экспериментальное определение местоположения ЮМП было выполнено в ходе кругосветной антарктической экспедиции русских мореплавателей Ф. Беллинсгаузена и М. Лазарева (1819–1821). Вскоре после экспедиции к Северному магнитному полюсу немецкий физик К. Гаусс рассчитал на основе сферического гармонического анализа нахождение ЮМП в точке с координатами 66 ° ю.ш., 146 ° в.д. Достичь этой точки и провести инструментальные измерения удалось только 16 января 1909 г. Британской антарктической экспедицией под руководством Эрнеста Шеклтона (экспедиция на "Нимроде"). Далее ЮМП определялся в 1912, 1931, 1951, 1962 гг. (Рис.7).

Рис. 7. Смещение южного магнитного полюса. Желтыми квадратами обозначены места инструментального определения магнитного полюса  (https://www.ngdc.noaa.gov/geomag/GeomagneticPoles.shtml). Изображение предоставлено участниками экспедиции

Рис. 7. Смещение южного магнитного полюса. Желтыми квадратами обозначены места инструментального определения магнитного полюса (https://www.ngdc.noaa.gov/geomag/GeomagneticPoles.shtml). Изображение предоставлено участниками экспедиции

Продолжая традиции русских мореплавателей и первооткрывателей Антарктиды М. Лазарева и Ф. Беллинсгаузена, моряки ВМФ СССР при участии сотрудников СПбФ ИЗМИРАН определяли местоположение Южного магнитного полюса во время первой кругосветной экспедиции на ОИС "Адмирал Владимирский" и ОИС "Фаддей Беллинсгаузен" (1982-1983). Было пройдено несколько галсов в районе ЮМП с целью определения его местоположения. Научный руководитель работ — контр-адмирал Л. Митин. (Рис.8).

Последнее инструментальное определение Южного магнитного полюса проведено австралийской геологической службой на судне "Sir Hubert Wilkins" в 2000 г.

4. Кругосветная экспедиция ВМФ ОИС "Адмирал Владимирский" 2019-2020 гг.

В 2019-2020 гг. по решению министра обороны РФ в честь 200-летия открытия Антарктиды и 250-летия со дня рождения адмирала И.Ф. Крузенштерна успешно проведена кругосветная экспедиция на океанографическом исследовательском судне (ОИС) ВМФ "Адмирал Владимирский".

Одной из задач антарктической экспедиции являлось измерение параметров магнитного поля отдельных участков Мирового океана по маршруту следования и инструментальное определение координат Южного магнитного полюса в море Дюрвиля (около Земли Адели Антарктиды) и определение невязки магнитного полюса по мировым моделям. Эту задачу на ОИС выполняла объединённая геофизическая группа в составе ФГБУ "ИПГ", МГУ имени М.В. Ломоносова (физический и геологический факультеты), ИЗМИРАН и АО "Южморгеология" при поддержке Русского географического общества, Гидрометеорологической службы ВС РФ, Гидрографической службы ВМФ.

В составе геофизической группы по измерениям параметров магнитного поля проводили работы: Илья Грушников — кафедра физики Земли физического факультета МГУ (г. Москва), Вадим Солдатов — ИЗМИРАН (Санкт-Петербург), Михаил Кузякин — "Южморгеология" (г. Геленджик) (Рис.10).

Программу исследований, координацию съёмок формировали специалисты и руководство ФГБУ "ИПГ", ИЗМИРАН, геологического факультета МГУ. Определение характеристик МПЗ (модуля и полного вектора индукции магнитного поля) в Мировом океане является сложной задачей. Собственное и наведённое магнитное поле корабля требует применения буксируемых морских магнитометров. Кроме того, отсутствие в океане магнитовариационных станций затрудняет учёт переменной составляющей МПЗ. Для решения измерительных задач в экспедиции использовалось два типа приборов. Первый — классический буксируемый магнитометр. В настоящее время большинство магнитометрических измерений на акватории Мирового океана выполняется морскими протонными буксируемыми магнитометрами, а измеряемой величиной является модуль полного вектора магнитного поля. 

Для выполнения задач экспедиции компанией АО "Южморгеология" был предоставлен комплект магнитометрического оборудования и опытный квалифицированный оператор, сопровождавший ход выполнения работ. Важным фактором, повлиявшим на успешное завершение работ по уточнению положения ЮМП, стало наличие у компании обширного опыта и понимание специфики выполнения магнитометрических измерений в приполярных областях (Рис.11).

Модульные площадные съёмки выполнялись с помощью протонных буксируемых морских магнитометров для измерения модуля индукции магнитного поля. Их работа осуществлялась в дифференциальном режиме для наблюдений и учёта вариаций магнитного поля. Измерения параметров МПЗ производились двумя гондолами с датчиками, работающими на эффекте Оверхаузера, буксируемыми последовательно друг за другом на расстояние не менее 300–400 м за судном, чтобы минимизировать влияние магнитного поля корабля.

Для определения положения ЮМП чрезвычайно важно знание компонент магнитного поля, поэтому в ходе съёмки были дополнительно использованы трёхкомпонентные магнитометры.

Компонентные измерения проводились с помощью магнитовариационного комплекса MVC-2, разработанного ИЗМИРАН и состоящего из трёх датчиков торсионного типа. Параллельно с этим комплексом использовался компонентный магнитометр с датчиками, основанными на магниторезистивном эффекте. Датчики были ориентированы вдоль продольной, поперечной и вертикальной оси корабля. Вся магнитометрическая аппаратура находилась в лаборатории, расположенной на корме судна таким образом, чтобы датчики находились максимально удалённо от корпуса судна с целью уменьшения влияния  магнитного поля корабля на показания датчиков (Рис.12).

Эта работа велась научным сотрудником лаборатории морских геомагнитных исследований СПбФ ИЗМИРАН В. Солдатовым. Компонентные магнитометрические измерения проводились практически непрерывно на всех этапах экспедиции, что позволило выполнить десятки тысяч линейных километров морской компонентной магнитной съёмки. Это имеет большую ценность для исследования магнитного поля Земли, поскольку забортные измерения иногда не проводились в силу погодных условий. Общий объём измерений составляет несколько терабайт и требует тщательной камеральной обработки, которая будет выполнена сотрудниками лаборатории. 

В ходе экспедиции проводились измерения магнитометрами обоих видов, что позволило проводить анализ и сопоставление этих измерений и постоянно контролировать работу аппаратуры. В ходе рейса несколько раз проводились исследования собственного и наведённого магнитного поля судна (девиационные работы). Для этого необходимо было определить районы и методику, согласовать предложения с руководством экспедиции. Этим в экспедиции занимался магистрант кафедры физики Земли физического факультета МГУ Грушников И.Ю. (Рис.13 и 14).  

Работы по инструментальному определению ЮМП были в начале апреля 2020 г. по плану экспедиции. Несмотря на сильные шторма в Южном океане — ветер более 30 метров в секунду и 7-метровые волны, — команда "Адмирала Владимирского" выполнила одну из основных задач экспедиции.

6 апреля 2020 года судно "Адмирал Владимирский" прибыло в район съёмки магнитного поля Земли в море Дюрвиля в районе Земли Адели Антарктиды для определения положения ЮМП. Более 48 часов специалисты, члены команды в сложных метеоусловиях непрерывно проводили съёмки параметров магнитного поля.  Для определения положения магнитного полюса экспедицией были проведены площадные морские магнитометрические работы с использованием трёхкомпонентного и протонного морского буксируемого магнитометра (Рис.15 и 16).

Экспериментальное определение положения магнитного полюса подразумевает проведение магнитной съёмки, по результатам которой можно определить область, где поле направлено практически вертикально. О том, что корабль находился непосредственно в районе местонахождения МПЗ, свидетельствовала, например, и "сошедшая с ума" стрелка компаса, которая меняла направление вместе с судном, разворачивалась на 180 градусов, беспричинно крутилась во все стороны.

Для параметрического определения положения ЮМП заранее была спроектирована площадная сеть наблюдений. На рисунке 17 отмечены положения полюса по данным международной модели геомагнитного поля IGRF-13 в 2020 году, а также за предыдущие годы и прогнозируемое положение. Наряду с данными модели IGRF-13 на рисунке представлены положения ЮМП по данным модели IGRF-12 и модели WMM. Если обратить внимание на историю дрейфа ЮМП, то можно заметить, что его траектория описывается не прямой, а кривой линией (Рис. 16). В 2019 и 2020 гг. направление его смещения было в направлении запад-юго-запад. Основываясь на положении полюса по данным различных моделей и тренду его смещения в прошлых годах, проектная сеть наблюдений расширена на юго-запад относительно положения полюса по данным модели IGRF-13.

Рис. 17. Ретроспективное и прогнозируемое положение ЮМП и проведённые работы по определению местоположения магнитного полюса. Изображение предоставлено участниками экспедиции

Рис. 17. Ретроспективное и прогнозируемое положение ЮМП и проведённые работы по определению местоположения магнитного полюса. Изображение предоставлено участниками экспедиции

На рисунке 17 показано положение галсов детальной морской магнитной съёмки акватории Южного океана у берегов Антарктиды, выполненных ОИС "Адмирал Владимирский" с целью определения положение ЮМП (справа). Жёлтые кружки — положение полюса на эпоху, обозначенную цифрами, зелёные звёздочки — положение ЮМП по моделям WMM и IGRF-12.

В полученные данные также будут внесены поправки по магнитным вариациям на день проведения съёмок, взятые с ближайших магнитных обсерваторий, — Дюмон-Дюрвиль (Франция) в Антарктиде и на острове Маккуори (Новая Зеландия). Данные магнитных измерений в море Дюрвиля в районе ЮМП будут переданы в организации участников экспедиции, где пройдут камеральную обработку, сравнение с другими параметрами и пройдут процедуру окончательного уточнения положения Южного магнитного полюса Земли. Сводный заключительный отчёт по исследованиям МПЗ будет представлен на заседании Русского географического общества в конце 2020 г.

Заключение

Таким образом, команда ОИС "Адмирал Владимирский" спустя 20 лет после последнего инструментального уточнения магнитного полюса провела работы в районе нахождения Южного магнитного полюса вблизи берегов Антарктиды. Этот факт является серьёзным вкладом российской науки (при безусловной поддержке Военно-морского флота России и Русского географического общества) в мировую копилку достижений в познании основополагающих геофизических процессов, происходящих на нашей планете для фундаментальных и прикладных задач.

Принимая во внимание важность и глобальность подобных исследований, необходимо определить перспективы исследований и мониторинга магнитного поля Земли. Целесообразно объединение наземных наблюдательных сетей и отдельных магнитных обсерваторий Росгидромета, РАН, Минобрнауки и Росгеологии.

В международном сотрудничестве в рамках Международной ассоциации геомагнетизма и аэрономии  IAGA, в связи с ускорением движения магнитных полюсов необходимо достигнуть договоренностей по регулярному инструментальному контролю магнитных полюсов для уточнения мировых моделей.

Используя опыт проведения Международного геофизического года — МГГ (в самый разгар холодной войны — в 1957-1958 гг.), в преддверии нового 25 солнечного цикла и в условиях непростых международных отношений, целесообразно провести Международный год магнитного поля (или новый МГГ) в целях исследования и прогнозирования "здоровья" и состояния нашей планеты.

________

Примечания

        1. Институт прикладной геофизики имени академика Е.К. Федорова Росгидромета (ФГБУ "ИПГ").

2. Санкт-Петербургский филиал Института земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (СПбФ ИЗМИРАН).

3. Санкт-Петербургский государственный университет.

4. Московский государственный университет имени М.В. Ломоносова.

5. АО "Южморгеология", Росгеология.

Благодарности

Коллектив авторов выражает благодарность всем, кто принимал участие в подготовке специалистов, обработке результатов измерений, доставке оборудования для экспедиции, оперативно организовывал передачу информации, обеспечивал связь и координацию по маршруту следования ОИС "Адмирал Владимирский", кто осуществлял поддержку и проведение научных консультаций.

1. Руководителю экспедиции ОИС "Адмирал Владимирский", заместителю начальника Управления навигации и океанографии МО РФ Осипову Олегу Дмитриевичу.

2. Директору Института прикладной геофизики имени академика Е.К. Федорова Росгидромета (ФГБУ "ИПГ"), докт. физ.-мат. наук Репину Андрею Юрьевичу, сотрудникам института.

3. Московский государственный университет имени М.В. Ломоносова. Физический факультет. Заведующему кафедрой физики Земли докт. физ.-мат. наук, профессору Смирнову Владимиру Борисовичу и сотрудникам кафедры.

4. Московский государственный университет имени М.В. Ломоносова. Геологический факультет. Заведующему кафедрой геофизических методов исследования земной коры, докт. физ.-мат. наук, профессору Булычеву Андрею Александровичу; доценту кафедры, канд. геол.-минерал. наук Лыгину Ивану Владимировичу; сотрудникам и студентам кафедры.

5. Санкт-Петербургский филиал Института земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (СПбФ ИЗМИРАН). Научным сотрудникам отдела геомагнитных исследований: канд. физ.-мат. наук Дёминой И.М., канд. физ.-матем. наук Иванову С.А., канд. техн. наук Сергушину П.А., Зайцеву Д.Б., Леваненко В.А., Петленко А.В.

6. Управляющему директору АО "Южморгеология" Красинскому Егору Михайловичу (Российский геологический холдинг "Росгеология").

7. Арктический и антарктический научно-исследовательский институт Росгидромета (ФГБУ "ААНИИ"). Директору института, докт. географ. наук Макарову Александру Сергеевичу, руководителю Российской антарктической экспедиции (РАЭ), канд. физ.-мат. наук Клепикову Александру Вячеславовичу, руководителю отдела геофизики, канд. техн. наук Калишину Алексею Сергеевичу.

8. Начальнику Гидрометеорологической службы Вооруженных Сил Российской Федерации Удришу Владимиру Викторовичу и сотрудникам службы.

 9. Управление навигации и океанографии МО РФ.  Канд. техн. наук Процаенко Сергею Владимировичу.

 

Литература

  1. Баткова Л.А., Боярских В.Г., Демина И.М. Комплексная база данных геомагнитного поля по результатам съёмок на немагнитной шхуне "Заря" // Геомагнетизм и аэрономия. 2007. Т. 47. С. 571-576.
  2. Карасик А.М. Магнитные аномалии океана и гипотеза разрастания океанического дна // Геотектоника. 1971. № 2. С. 3-18.
  3. Касьяненко Л.Г., Пушков А.Н. Магнитное поле, океан и мы. Л., Гидрометеоиздат, 1987, 192 с.
  4. Кузнецов В.В. Причина ускорения дрейфа Северного магнитного полюса: джерк или инверсия? // Геомагнетизм и аэрономия. 2006. Т. 46. № 2. С. 280-288.
  5. Кузнецов В.В. Положение Северного магнитного полюса в 1994 г. ДАН. 1996. Т. 348, №.3. С. 397-399.
  6. Кузнецов В.В. Прогноз положения Южного магнитного полюса на 1999 г. ДАН. 1998-б. Т. 361. № 2. С. 348-251.
  7. Морские геомагнитные исследования на НИС "Заря" // Сб. под ред. В.И. Почтарева. М., Наука, 1986, 184 с.
  8. Решетняк М.Ю., Павлов В.Э. Эволюция дипольного геомагнитного поля. Наблюдения и модели, Геомагнетизм и аэрономия 2016. Том 56. № 1. С. 117.
  9. Заболотнов В.Н., Минлигареев В.Т.  Средства измерений магнитных величин: аналитический обзор // Мир измерений. 2013. № 4. С. 53-61.
  10. Минлигареев В.Т., Заболотнов В.Н., Денисова В.И. и др. Обеспечение единства магнитных измерений на государственной наблюдательной сети // Гелиогеофизические исследования: научный электронный журн. 2013. № 6. C. 8-19.
  11. Минлигареев В.Т., Алексеева А.В., Качановский Ю.М. и др.  Картографическое обеспечение магнитометрических навигационных систем робототехнических комплексов // Известия ЮФУ. Технические науки. Тем. вып. "Перспективные системы и задачи управления". Ростов-на-Дону, 2019. № 1 (203). С. 248-258.
  12. Ivanov S.A., Merkuriev S.A. Preliminary results of the Geohistorical and Paleomagnetic analysis of marine magnetic anomalies in the northwestern Indian Ocean. Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism. International Conference on Geomagnetism, Paleomagnetism and Rock Magnetism (Kazan, Russia) Springer International Publishing, Proceedings of the 12th International School and Conference “Conference on Paleomagnetism and Rock Magnetism”. Springer International Publishing, 2019. —  pp.479-490.
  13. Yu. A.Kopytenko, V.I. Pochtariev "On the ability of vector geomagnetic measurements to present information" Russian Airborne Geophysics and Remote Sensing. GTTI. SPIE. USA, v. 2111, 1993, p.196.
  14. Кузнецов В.Д., Петров В.Г., Копытенко Ю.А. Использование магнитного поля Земли в проблемах ориентации и навигации // Труды II Всероссийской науч. конф. "Проблемы военно-прикладной геофизики и контроля состояния природной среды". СПб.: ВКА им. А.Ф.Можайского, 2012. Т.1. С.424-432.
  15. Yu.A., E.A.Kopytenko, D.B.Zaitsev, P.M.Voronov, L.G.Amosov "Magnetovariation complex MVC-2" Proc. of the VI-th Workshop on Geomagnetic Observatory Instr., Data Acquisit. and Processing. Belgium. 1994, p.10.
  16. Kopytenko Yu.A., Petlenko A.V., Petrova A.A., Kopytenko E.A., Voronov P.M., Ismagilov V.S., Zaitsev D.B., Timoshenkov Yu.P. Peculiarities of Interpretation of Magnetic Field Components' Data Obtained at High-Latitudes on the Board of Moving Carrier, Proceedings of the International Conference on Marine Electromagnetics: Marelec 97 : 23-26 June 1997, London UK, pp.6.
  17. Копытенко Ю.А., Петрищев М.С., Сергушин П.А, Леваненко В.А., Перечесова А.Д. Устройство для изготовления торсионных подвесов чувствительных элементов приборов // Патент РФ № 2519888, МПК D07B3/00, 20.06.2014, Бюл. № 17.
Материалы по теме
Все
Новости
Статьи и репортажи
Экспедиции
Фотогалерея
03 мая 2023
Кругосветная океанографическая экспедиция Минобороны РФ и РГО
Подробнее
30 апреля 2023
Кругосветная океанографическая экспедиция на ОИС "Адмирал Владимирский"
Подробнее
30 апреля 2023
Антарктида глазами участников кругосветной экспедиции
Подробнее
05 августа 2022
Находки Арктической комплексной экспедиции РГО и Северного флота — на выставке Музея Арктики и Антарктики
На выставке впервые экспонируются не только найденные фрагменты продовольственного депо австро-венгерской экспедиции, но и самая ценная находка — чудом сохранившееся во льдах Арктики письмо Вайпрехта и Пайера
Подробнее
22 июня 2021
Международному дню гидрографии посвятили собрание в Штаб-квартире РГО в Петербурге
Моряки подвели итоги кругосветной экспедиции к берегам Антарктиды и обсудили перспективы развития Военно-морского флота
Подробнее
08 июня 2021
Дороги по воде: пройти, найти и описать
Подробнее
29 декабря 2020
Научные итоги кругосветной экспедиции к берегам Антарктиды. Видеолекция Олега Осипова
Что открыли, увидели, замерили
Подробнее
03 декабря 2020
Представители РГО на парусной яхте пройдут 15 тыс. морских миль через два океана
Из Турции стартовала экспедиция, которая пройдёт по маршруту русских мореплавателей
Подробнее
Показать еще Загрузка